Solar Orbiter and the ground-based observatories

T. Appourchaux Institut d'Astrophysique Spatiale

Solar Orbiter Exploring the Sun-Heliosphere connection

- Joint ESA / NASA mission
- Launch in October 2018
- Three-axis stabilized
- Perihelie at 0.28 AU, inclined orbit up 33° solar latitude
- 10 remote-sensing and in-situ instruments
- Mission of 6.5 years + 2.5 years extension
- Scientific objectives

Solar Orbiter Science objectives

- How does the Sun create and control the Heliosphere and why does solar activity change with time ?
 - What drives the solar wind and where does the coronal magnetic field originate?
 - How do solar transients drive heliospheric variability?
 - How do solar eruptions produce energetic particle radiation that fills the heliosphere?
 - How does the solar dynamo work and drive connections between the Sun and the heliosphere?

Solar Orbiter: Payload

្ន In situ

EPD	Energetic Particle Detector	Composition, timing and distribution functions of energetic particles
MAG	Magnetometer	High-precision measurements of the heliospheric magnetic field
RPW	Radio & Plasma Waves	Electromagnetic and electrostatic waves, magnetic and electric fields at high time resolution
SWA	Solar Wind Analyser	Sampling protons, electrons and heavy ions in the solar wind
Remote sensing		
EUI	Extreme Ultraviolet Imager	High-resolution and full-disk EUV imaging of the on-disk corona
METIS	Coronagraph	Visible and (E)UV Imaging of the off-disk corona
PHI	Polarimetric & Helioseismic Imager	High-resolution vector magnetic field, line-of-sight velocity in photosphere, visible imaging
SoloHI	Heliospheric Imager	Wide-field visible imaging of the solar off-disk corona
SPICE	Spectral Imaging of the Coronal Environment	EUV spectroscopy of the solar disk and near-Sun corona
STIX	Spectrometer/Telescope for Imaging X-rays	Imaging spectroscopy of solar X-ray emission

Solar Orbiter: the platform

Picture courtesy DM / ESA

Needs for ground-based support: The example of Solar Probe plus

- How do the corona and inner heliosphere magnetically connect to the Sun?
 - What is the global context for in situ structures measured by SPP
 - How do transient structures (CMEs) from the Sun affect the corona and inner heliosphere?
- How are solar energetic particles accelerated and transported to SPP, SO and other space missions?
 - What are the sources of energetic particle suprathermal seed populations?
 - What role do flares and CME-driven shocks play in the acceleration of solar energetic particles?

Needs for ground-based support: Observatories for SPP

- Meridional circulations, differential rotation
 - Solar radial velocity / magnetic field / helioseismology
- Localized energy release (flares, CMEs,...)
 - H α monitors + the above
- Large-scale magnetic structures
 - Stokes polarimetry / magnetograms
- Magnetic corona
 - Radio observations

Observatories for Solar Orbiter Radial velocity

- Full disk at 617.3 nm:
 - Global Oscillations Network Group (+H α)

- Hi res at many lines
 - HELLRIDE

Observatories for Solar Orbiter Radial velocity

- Full disk at 617.3 nm:
 - Filtergraph of PHI at the Meudon Solar Tower

The Sun as seen by FG PHI on Sep 29,2015 (in km/s)

Observatories for Solar Orbiter: Images and radial velocity

- Meudon observatory:
 - -~ Full disk H $\!\alpha$, Ca II images / Full disk radial velocity H $\!\alpha$
- Pic du midi:
 - Coronal images in H α / Full disk H α , Ca II images
- Coimbra
 - $-\,$ Full disk H $\!\alpha$, Ca II images / Full disk radial velocity H $\!\alpha$
- Kanzelhöhe
 - Full disk H α , Ca II images, White light
- Dutch Optical Telescope:
 - High res. H α , Ca II
- Tamanrasset:
 - H α , Ca II, Helium D3

Observatories for Solar Orbiter Polarimetry

- THEMIS / Tenerife: restart in 2018 with AO
 - Multi line mode / Multichannel Subtractive Double Pass mode
- TRIPPEL at the Swedish Solar Telescope / Tenerife
 - Many line mode (one at a time?)
- GREGOR / Tenerife
 - From Visible to IR
- VTT / Tenerife
 - From Visible to IR
- DKIST / Hawaii: start late 2019
 - From Visible to IR
- EST / Tenerife: commissioned in 2026
 - From Visible to IR

Observatories for Solar Orbiter: Radio observatories

- Nancay Radioheliograph (150-450 MHz)
- Nancay total radio flux
- Nancay decametric array (10-100 MHz)
- LOFAR (10-270 MHz)
- ORFEES (Flare detection)

14:19:12 TU

Conclusion

- Current focus is on payload delivery
- Need for a White Paper for Solar Orbiter
- Needs are $\mbox{H}\alpha$ images, velocity, polarimetry and radiotelescopes
- Coordination of observatories yet to be put in place
- Coordination for preparing and supporting the encounters