

Using solar images in irradiance studies: an overview

Matthieu Kretzschmar LPC2E, CNRS & University of Orléans

Contents

- Solar irradiance status: observations and models.
- Using images for solar irradiance studies.

Solar irradiance observations

Schöll et al., 2015

Solar irradiance observations

Schöll et al., 2015

Solar cycle variability

- Cycle variability is badly known above about 220nm
- Good agreement between data and models on rotational time scale
- Models should be used to constrain observations and vice versa...

Solar cycle variability

Matthes et al., sub.

Contributions of network and faculae to cycle variability

Vuets et al., 2016

Solar irradiance models

empirical models (NRLSSI2)

- Use full Sun proxies: sunspot area, Mg II index, f10.7cm, etc...
- make linear regression at rotational timescale and use these relations at cycle timescale.

Lean et al. 1998; Coddington et al., 2016

semi-empirical models (S<u>ATIRE, SR</u>PM)

 daily spatial distribution of magnetic structures

•

 10^{2}

 10^{3}

p(dyne cm⁻²)

radiative

transfert

 10^{4}

10⁵

Krivova et al., 2010; Fontenla et al., 2015

spectrum

 Sum up contribution from each pixel

Assumptions in semiempirical models

- Constant contrast in time.
- Constant contrast in one structure (including QS).
- Structure definition.
- Radial model atmosphere, 1D radiative transfer, + all the assumptions in radiative transfert code.
- CLV
- Faculae filling factor.
- Ephemeral regions.

SOLAR IRRADIANCE SUDIES

Photometry

- Conversion to physical units (see CLIMSO talk)
- need UNCERTAINTY and STABILITY
- usually very difficult from ground.
- Magnetic field

Contrast

- Contrast images as proxy.
- Characterization of contrast vs Magnetic field.
- Contrast variations in Time and Space (CLV).
- Constraint on model atmosphere and radiative transfer code (magnetic structure spectrum).

Contrast images as proxy

- San Fernando Observatory:
 - **393.4 nm** with a 1 nm bandpass (Ca II **K**)
 - 672.3 nm with a 10 nm bandpass (red)

Preminger et al., 2011

CIV

 $\Sigma = \sum_{i} C_{i} \phi(\mu_{i})$

Contrast

Figure 3. TSI and model fit using SFO data, $R^2 = 0.85$ (1988–2010).

Contrast vs B and µ

Gravet et al., in prep

Which wavelengths and sensitivity on ground for similar studies?

Which wavelengths and sensitivity on ground for similar studies?

Using images to test atmospheric profiles and their variability

Can this be done from ground based observations?

Conclusion

Contrast

- Contrast images as proxy.
- Characterization of contrast vs Magnetic field.
- Contrast variations in Time and Space.
- Constraint on model atmosphere and radiative transfer code (magnetic structure spectrum).
- Better if at « new » wavelength.
- Structure area, ratio, distribution, variability,

Thank you